skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghaddar, Bissan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed, and the rest of the optimization variables (state variables) are set up as a solution to a known system of possibly nonlinear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the nonlinearity of other constraints. We implement our approach and demonstrate its performance on Matpower instances of AC optimal power flow. Although this paper focuses on quadratic problems, the approach is suitable for more general setups. 
    more » « less